High sodium intake raises blood pressure, while high potassium intake tends to lower it. However, these effects vary between men and women in ways that scientists do not yet fully understand. A recent study found that biological sex differences may influence how sodium and potassium affect blood pressure regulation, with the kidneys playing a crucial role in mediating these responses.
Researchers developed sex-specific computer models that simulate how the body regulates sodium, potassium, fluids, and blood pressure. These models incorporated key systems involved in this process, such as the kidneys, blood vessels, digestive system, and hormones that help manage blood pressure. The simulations accounted for known differences between men and women in kidney function, hormone responses, and nerve activity.
The models revealed that women’s blood pressure rises less than men’s in response to a high-sodium diet. This muted response appears to be due to differences in kidney transporter proteins, which control how the kidneys reabsorb sodium and potassium. However, when potassium intake increased, the models predicted a robust response wherein more potassium and sodium are excreted in urine, resulting in a substantial drop in blood pressure, even when sodium intake remains high.
These findings suggest that women possess a built-in advantage in managing high-sodium intake, likely due to differences at the kidney level. They also support increasing dietary potassium as an effective strategy for lowering blood pressure. Learn more about sodium needs in Aliquot #124: How much sodium do you actually need?
Plastic contamination has become pervasive, with microplastics—microscopic plastic particles—now detected in most human tissues. A recent study found microplastics in the follicular fluid of women undergoing fertility treatment, raising new concerns about how these contaminants might affect human reproduction.
Researchers collected follicular fluid samples from 18 women receiving assisted reproductive treatment. To detect and characterize plastic particles smaller than 10 micrometers, they used scanning electron microscopy paired with energy-dispersive X-ray spectroscopy—an advanced technique that identifies materials based on their composition.
They found microplastics in nearly 80% of the samples (14 out of 18), with an average concentration of more than 2,000 particles per milliliter. On average, particles measured about 4.5 micrometers in diameter. They did not identify an association between microplastic concentration, fertilization, miscarriages, and live birth. However, higher microplastic concentrations were associated with higher levels of follicle-stimulating hormone, a key marker of ovarian function.
These findings indicate that microplastics accumulate in human ovarian follicles. The investigators proposed that the lack of association between microplastics and aspects of reproductive health may have been due to the small study size (only 18 women), especially in light of animal evidence indicating that microplastics disrupt hormone regulation, impair egg maturation, and alter embryo development. Learn more about the effects of microplastics on the reproductive system in this episode featuring Dr. Rhonda Patrick.
In small doses, stress can sharpen focus and improve resilience, but chronic stress gradually erodes emotional stability, increasing the risk of major depressive disorder. A recent study found that autophagy—the brain’s recycling and housekeeping system—helps maintain emotional stability by removing old or damaged proteins.
Researchers explored how short-term and long-term stress influenced autophagy in mice and investigated whether antidepressant drugs could restore this process. Employing genetic techniques, the researchers selectively inhibited or enhanced autophagy in a region of the brain called the lateral habenula and then monitored how the animals reacted to stress.
They found that acute stress activated autophagy, while chronic stress inhibited it. When autophagy ceased functioning properly, stress-related behaviors increased. However, restoring autophagy—even briefly—produced rapid antidepressant-like effects. Drugs commonly used to treat depression also reactivated autophagy in this brain region. Additional experiments indicated that autophagy helps regulate brain cell activity by breaking down excess glutamate receptors, which are often overactive in depression.
These findings suggest that disrupted autophagy in the lateral habenula plays a central role in how chronic stress contributes to depression. Learn more about autophagy in this episode featuring Dr. Guido Kroemer.