High sodium intake raises blood pressure, while high potassium intake tends to lower it. However, these effects vary between men and women in ways that scientists do not yet fully understand. A recent study found that biological sex differences may influence how sodium and potassium affect blood pressure regulation, with the kidneys playing a crucial role in mediating these responses.
Researchers developed sex-specific computer models that simulate how the body regulates sodium, potassium, fluids, and blood pressure. These models incorporated key systems involved in this process, such as the kidneys, blood vessels, digestive system, and hormones that help manage blood pressure. The simulations accounted for known differences between men and women in kidney function, hormone responses, and nerve activity.
The models revealed that women’s blood pressure rises less than men’s in response to a high-sodium diet. This muted response appears to be due to differences in kidney transporter proteins, which control how the kidneys reabsorb sodium and potassium. However, when potassium intake increased, the models predicted a robust response wherein more potassium and sodium are excreted in urine, resulting in a substantial drop in blood pressure, even when sodium intake remains high.
These findings suggest that women possess a built-in advantage in managing high-sodium intake, likely due to differences at the kidney level. They also support increasing dietary potassium as an effective strategy for lowering blood pressure. Learn more about sodium needs in Aliquot #124: How much sodium do you actually need?