Tag /

Lipopolysaccharide

Episodes

Posted on May 30th 2022 (almost 3 years)

Dr. Patrick's keynote: compromised intestinal barrier affects human health—cardiometabolic function, neurological health, behavior, and more.

Posted on April 9th 2022 (about 3 years)

In this clip, Dr. Ronald Krauss discusses the possible protective role of LDL cholesterol.

Posted on May 25th 2020 (almost 5 years)

In this clip, Dr. Dominic D'Agostino and Dr. Rhonda Patrick discuss the ketogenic diet and its implications for gut health.

Topic Pages

We haven't published any topic pages associated with this tag yet!

News & Publications

  • Obesity causes chronic inflammation, which promotes atherosclerosis and cardiovascular disease. Previous research suggests that spices such as cinnamon, cumin, and ginger exert short-term anti-inflammatory effects; however, studies with longer durations are needed to confirm these findings. Authors of a recent study found that four weeks of spice consumption reduced inflammation and altered monocyte function in adults at risk of cardiometabolic disease.

    Monocytes are white blood cells that respond to infection by promoting inflammation. Obesity and dyslipidemia cause inappropriate activation of monocytes, promoting chronic inflammation in the arteries. Pro-inflammatory monocytes carrying excess lipids, called foam cells, accumulate in arterial walls, narrowing the arteries and restricting blood flow. Consuming spices that contain anti-inflammatory bioactive compounds may help reduce cardiovascular disease risk.

    The authors recruited 71 participants and assigned them to consume a standard American diet with added spices in three doses: low (a dash), medium (a quarter teaspoon), or high (a half teaspoon). Participants consumed each dose of spices for four weeks and completed the doses in random order. The spice mixture contained the most common spices used in the United States, the most abundant of which were cinnamon, coriander, ginger, cumin, and parsley. Participants provided blood samples at multiple points throughout the study. Finally, the investigators isolated monocytes from the participants’ blood and exposed the cells to bacterial endotoxin in order to promote inflammation.

    Compared to baseline, participants had lower fasting serum levels of the pro-inflammatory cytokine interleukin-6 following four weeks of the medium dose spice blend. The monocytes from these participants also secreted less interleukin-6 when challenged with bacterial endotoxin. Participants consuming the medium and high spice blends had fewer foam cells and more conventional monocytes than participants consuming the low spice blend.

    The authors concluded that spices reduced fasting inflammation and altered monocyte behavior. They did not know why the medium dose was more effective in reducing inflammation than the high dose, but they hypothesized that the high dose of spices may have contained such a high level of polyphenols that it promoted oxidative stress. More research is needed to test this hypothesis. This study was funded by the McCormick Science Institute.

  • In recent years, vaping, or smoking electronic cigarettes (e-cigarettes), has emerged as a popular substitute for smoking tobacco-containing cigarettes. E-cigarettes produce a vapor that may contain nicotine as well as a variety of toxic substances, including some carcinogens. Findings from a new study suggest that some compounds in e-cigarettes trigger inflammation, promoting a leaky gut.

    Leaky gut, otherwise known as intestinal permeability, is a condition in which gaps form between the tight junctions between the endothelial cells that line the gut. These gaps allow pathogens like bacteria or endotoxins (toxins that are released when bacteria die) to leak through the intestinal wall and pass directly into the bloodstream. Leaky gut has been linked with a number of chronic diseases, including Alzheimer’s disease and cardiovascular disease.

    The authors of the study exposed mice to e-cigarette vapors for one hour per day and then they examined the animals' colons at one week and three months after the chronic exposure. Then they measured gene expression in the colons. They also built gut enteroids – three-dimensional tissue models that incorporate many of the features of human gut tissue, including an epithelial layer surrounding a functional lumen and all of the cell types normally found in the gut. They exposed the enteroids to e-cigarette vapor (with or without nicotine).

    They found that exposure to e-cigarette vapor promoted leaky gut, increasing the susceptibility of the gut lining to bacterial infections, and triggering gut inflammation. Use of the two models established that the primary components in the vapor responsible for the harmful effects were propylene glycol and vegetable glycerol, compounds present in more than 99 percent of all e-cigarettes. They also found that e-cigarette vapor altered expression of genes involved in the cellular response to stress, infection, and inflammation.

    These findings demonstrate that commonly used substances present in e-cigarettes promote leaky gut and drive inflammation and provide insights into the long-term health effects of e-cigarettes. They also underscore public health efforts to reduce e-cigarette use.